Short Reports 619

3 N HCl (5 μ l) and the mixture ether-extracted to give the acid fraction. The H_2O -soluble glycosides, HG-1', 2' and 3' were isolated by PC for further study.

Attempted identification of acid. The acid fraction was co-chromatographed with a wide range of organic acids on cellulose, polyamide and Si gel TLC. Solvents used were (A) n-BuOH-formic A-H₂O, 10:1:5 (cellulose); (B) EtOH-0.88 NH₄OH, 95:5 (cellulose); (C) MeCN-EtOAc-HCO₂H, 81:8: 9.1:9.1 (polyamide) and (D) EtOAc-toluene, 1:1 (Si gel). Detecting methods: UV, 2% bromocresol green spray (Me₂CO-H₂O) and diazotized sulphanilic acid-Na₂CO₃ spray. By a combination of these procedures (and MS), p-hydroxybenzoic acid was identified. The major acid produced, co-chromatographed only with succinic acid out of all the 60 naturally occurring acids for which R, values have been listed by Carles et al. [16] for solvents A and B. Confirmatory evidence however was not obtained.

Acknowledgements—The author wishes to acknowledge the assistance given by Dr E. O. Campbell of Massey University, Palmerston North, and Dr P. N. Johnson of Botany Division, D.S.I.R., Dunedin, in obtaining plant material.

REFERENCES

- 1. Grubb, P. J. (1970) New Phytol. 69, 303 and refs therein.
- 2. Grolle, R. (1972) J. Bryol. 7, 201.

- 3. Campbell, E. O. (1959) Trans. Roy. Soc. N.Z. 87, 245.
- Schuster, R. M. (1966) The Hepaticae and Anthocerotae of North America Vol. 1. pp. 629-634. Columbia Univ. Press, New York.
- 5. Schuster, R. M. ibid. 257.
- Bold, H. C. (1973) Morphology of Plants (3rd edit.) p. 285. Harper & Row, New York.
- Wesley, A. (1967) Advances in Bot. Res. (Preston, R. D., ed.)
 p. 2. Academic Press, London.
- Markham, K. R. and Porter, L. J. (1975) Phytochemistry 14, 1093.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) Systematic Identification of Flavonoids p. 35. Springer-Verlag, New York.
- Markham, K. R. and Porter, L. J. (1974) Phytochemistry 13, 1937.
- Harborne, J. B. (1975) in *The Flavonoids* (Harborne, J. B., Mabry, T. J. and Mabry, H., eds.) p. 404. Chapman & Hall, London.
- 12. Martensson, O. and Nilsson, E. (1974) Lindbergia 2, 145.
- Harborne, J. B. (1967) Comparative Biochemistry of the Flavonoids p. 313. Academic Press, London.
- 14. Harborne, J. B. (1976) Biochem. Syst. Ecol. 4, 31.
- Nilsson, E. and Bendz, G. (1973) Nobel Symposium 25. Chemistry in Botanical Classification, (Bendz, G. and Santesson, J., eds.) p. 117. Academic Press, New York.
- Carles, J., Schneider, A. and Lacoste, A. M. (1958) Bull. Soc. Chim. biol. 40, 221; (1958) J. Chromatog. 1, xxiii.

Phytochenustry, 1977, Vol. 16, pp 619-620. Pergamon Press Printed in England

NEW ISOFLAVONE GLYCOSIDES FROM THE WOODS OF SOPHORA JAPONICA

TADAHIRO TAKEDA, ISAO ISHIGURO, MICHIKO MASEGI and YUKIO OGIHARA Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, Japan

(Received 12 November 1976)

Key Word Index—Sophora japonica; Leguminosae; biochanin A 7- β -D-gentiobioside; biochanin A 7- β -D-xylosyl-glucoside.

The flavonoids of the rhizomes and the fruits of Sophora japonica [1-3] have been well studied but less is known of those in the wood. We have isolated biochanin A, irisolidone, maackiain, pratensein, sissotrin, irisolidone 740-glucoside and rutin [4-6] and now report two new isoflavone glycosides. These were purified by the droplet counter-current chromatography (DCC) [7, 8].

The first glycoside, mp $224-226^{\circ}$ afforded on acid hydrolysis biochanin A and glucose. From the UV spectrum it was assumed to be a 7-glucoside [9]. Exhaustive methylation by Kuhn's method gave the methylated product, which showed nine O-methyls and the molecular ion peak at m/e 720, the typical permethylated diglucose fragment ion m/e 423 in the ms. Methanolysis products of the permethyl ether were methyl 2,3,4,6-tetra-O-methylglucopyranoside, and methyl 2,3,4-tri-O-methylglucopyranoside. The PMR spectrum of the glycoside shows the presence of two anomeric protons on the β -linkage as judged from the β -values (δ , 4.62, δ , δ = 10Hz, 4.84, δ , δ = 6Hz). Thus, it is 7- δ -D-glucopyranosyl(1-6)- δ -D-glucopyranosyl]-biochanin A.

The second glycoside, mp 228-230°, afforded on acid hydrolysis biochanin-A and glucose and xylose and had similar spectral properties to the first compound.

Methanolysis of its permethylether gave methyl 2,3,4-tri-O-methylglucopyranoside and methyl 2,3,4-tri-O-methylxylopyranoside, thus showing that xylose is attached to the 6-position of glucose. The glycosidic bonds are β -configuration by PMR (δ 4.90, d, J = 10Hz, 5.60, d, J = 8Hz, respectively). Thus, it is biochanin A 7-(xylosyl(β 1 \rightarrow 6)glucoside).

EXPERIMENTAL

All mps were uncorrected. PMR spectra were taken at 100 MHz in CDCl₃ and/or d₅-Pyridine solution and chemical shifts are given in δ (ppm) scale. GLC was run with flame ionization detector using a glass column. PPC was conducted on Toyo Roshi No. 50 using the upper layer of $n\text{-BuOH-}(C_5\text{H}_5\text{N-H}_2\text{O})$ (6:2:3) and aniline hydrogen phthalate as spray reagent. TLC was performed on Kieselgel G (Merck) using (a) CHCl₃-MeOH-H₂O (35:65:40) (lower layer), (b) C_6H_6 -Me₂CO (4:1), (c) EtOAc-MeCOEt-HCO₂H-H₂O-C₆H₆ (4:3:1:1:2) (upper layer).

Isolation. Powdered woods of Sophora japonica (880g) collected at the Botanic Garden of Nagoya City University were extracted with MeOH for 3 hr on reflux. The MeOH extract was concentrated and partitioned between BuOH and H₂O. The BuOH layer was concentrated and precipitated with Et₂O.

620 Short Reports

Precipitate (11 g) was distributed on DCC using lower layer of CHCl₃-MeOH-H₂O (35:65:40) as a stationary phase and upper layer as a moving phase. Two new compounds were obtained as crystals. (2: 2.0 g. 3; 0.5 g). Sissotrin, irisolidone-7-O-glucoside and rutin were identified by the comparison of IR (KBr) and PMR spectrum with authentic samples. The gentiobioside was obtained as colourless prisms (MeOH-H₂O), mp 224–226°, $[\alpha]_{\rm b}^{24}$ – 38.2° (C = 1.79 in MeOH–H₂O 4:1) Anal. Calcd. for C₂₈H₃₂O₁₅; C, 55.26; H, 5.26. Found: C, 55.15; H, 5.24 UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε); 262 (4.61), 324 (3.61), $\lambda_{\rm max}^{\rm MeOH+AlCl_3}$ nm 272, $\lambda_{\rm max}^{\rm MeOH+AlCl_3}$ nm 276. PMR (d₅-Py); 3.70 (3H, s, —OMe), 4.20–4.00 (19H, m), 4.62 (1H, d, J = 10Hz), 4.84 (1H, d, J = 6), 6.66 (1H, d, J = 2, H-6), 6.94 (1H, d, J = 2, H-6)H-8), 6.98 (2H, d, J = 8, H-3',5'), 7.56 (2H, q, J = 2,8,H-2',6'), 8.06 (1H, s, H-2), 13.30 (1H, -OH). Permethyl ether was obtained as colourless needles, mp 78.5-80.5°. MS M+ 720, m/e 423 (6.5%), 298 (13.9%), 219 (1.7%), 187 (100%). PMR (δ ppm in CDCl₃); 3.36, 3, 46, 3.48, 3.50 (2 \times OMe), 3.68 (2 \times OMe), 3.84, 3.96, 4.24 (1H, d, J = 8Hz), 4.96 (1H, d, J = 8), 6.44 (1H, d, J = 3), 6.73 (1H, d, J = 3), 6.92 (2H, d, J = 10), 7.47 (2H, d, J = 10), 7.76 (1H, s). The octa-acetate crystallized as needles. mp 253–255°, PMR (δ ppm in CDCl $_3$) 1.90, 1.96, 2.02 (2 \times -OCOMe), 2.06 (3 \times --OCOMe), 2.40 (Arom. --OCOMe), 3.82 (OMe), 4.28 (1H, d, J = 8Hz), 4.62 (1H, d, J = 8), 5.0–5.3 (12H, m), 6.66 (1H, d, J = 2) 6.92 (2H, d, J = 8), 7.08 (1H, d, J = 2), 7.44 (2H, d, J = 8), 7.98 (1H, s). The 7-xylosylglucoside was isolated as needles (MeOH-H₂O) mp 228-230°, $[\alpha]_D^{24}$ -79.5° (c = 0.52 in MeOH-H₂O4:1). Anal. Calcd. for C₂7H₃₀O₁₄. H₂O; C, 54.36 H, 5.41. Found; C, 54.15 H, 5.22 UV $\frac{\text{MeOH}}{\text{max}}$ nm (log ε) 263 (4.55), 324 (3.56) $\frac{\text{MeOH}}{\text{max}}$ nm 263, $\frac{\text{MeOH}}{\text{max}}$ nm 272, $\frac{\text{MeOH}}{\text{max}}$ nm 273. PMR (δ) ppm in d₅-pyridine) 3.72 (3H, s, —OMe), 4.40–4.10 (17H, m), 4.76 (1H, d, J = 7Hz), 4.90 (1H, d, J = 10), 6.79 (1H, d, J = 2, H-6), 7.02 (1H, d, J = 2, H-8), 7.04 (2H, d, J = 9, H-3′,5′), 7.60 (2H, d, J = 9, H-2′,6′), 8.10 (1H, s, H-2). Permethyl ether, needles mmp 154–156.5°. MS M⁺ 676, m/e 379, 298, 175, 143. PMR (δ ppm in CDCl₃) 3.46, 3.48, 3.60 (2 × —OMe), 3.68 (2 × OMe), 3.84, 3.95, 4.22 (1H, d, J = 7), 4.87 (1H, d, J = 10), 4.94 (11H, m), 6.48 (1H, d, J = 2, H-6), 6.68 (1H, d, J = 2, H-8), 6.94 (2H, d, J = 8, H-3′5′), 7.50 (2H, d, J = 8, H-2′,6′), 7.80 (1H, s, H-2). Acetate was obtained as needles, mp 143–145°. PMR (δ ppm in CDCl₃) 1.92, 2.04 (3 × —OCOMe), 2.08 (2 × —OCOMe), 2.40 (Arom. —OCOMe), 3.84 (OMe), 4.56 (1H, d, J = 8Hz), 4.96 (1H, d, J = 7), 5.0–5.3 (11H, m), 6.64 (1H, d, J = 2), 6.94 (2H, d, J = 8), 7.00 (1H, d, J = 2), 7.44 (2H, d, J = 8), 7.94 (1H, s).

Acknowledgement-The authors thank Hôansha for grants.

REFERENCES

- 1. Szavo, V. (1958) Chem. Abstr. 52, 16502.
- Shibata, S. and Nishikawa, Y. (1963) Chem. Pharm. Bull. (Tokyo) 11, 167.
- Komatsu, M., Yokoe, I. and Shirataki, Y. (1976) Yakugaku Zasshi 96, 254.
- Banerji, A., Multi, V. V. S. and Seshadri, T. R. (1966) Indian J. Chem. 4, 70.
- 5. Kubo, M. and Fujita, K. (1973) Phytochemistry 12, 2547.
- 6. Stanev, St. (1962) Chem. Abstr. 56, 6092.
- Tanimura, T. Pisano, J. J., Ito, Y. and Bowman, R. L. (1970) Science 169, 54.
- Kawai, K., Akiyama, T., Ogihara, Y. and Shibata, S. (1974) Phytochemistry 13, 2829.
- 9. Mabry, T. J. and Thomas, M. B. (1970) The Systematic Identification of Flavonoids. Springer Verlag, New York.

Phytochemistry, 1977, Vol 16, pp 620-621 Pergamon Press Printed in England

A NEW TETRAMETHYLURIC ACID FROM COFFEA LIBERICA AND C. DEWEVREI

JOSEF PETERMANN, THOMAS W. BAUMANN and HANS WANNER Institut für Pflanzenbiologie der Universität, Zollikerstrasse 107, CH-8008 Zürich

(Received 24 September 1976)

Key Word Index—Coffea; Rubiaceae; leaves, O(2),1,7,9-tetramethyluric acid.

In an earlier communication [1], we reported the presence of 1,3,7,9-tetramethyluric acid (1) and O(2),1,9trimethyluric acid (2) in the genus Coffea. In a detailed study on the distribution of caffeine and these methylated uric acids during vegetative development of C. liberica [2], we noticed that, at a certain developmental stage of the plant, the leaves contain a third uric acid in concentrations mostly less than 0.1%. Based upon its transient occurrence which coincides with a decrease in concentration of (1) and an increase of (2), we supposed that it could be the metabolic intermediate and may have the structure of (3). The chromatographic comparison with an authentic sample of (3), which was synthesized earlier for proper identification of (2), confirmed our suggestion. We isolated the substance in pure form for identification from C. liberica Bull ex Hiern as well as from two varieties of C.

2R = H 3R = Me